
Public

SMART CONTRACT AUDIT REPORT

for

MATRIXPORT

Prepared By: Yiqun Chen

Hangzhou, China
July 7, 2021

1/31 PeckShield Audit Report #: 2020-104

sxwang@peckshield.com

Public

Document Properties

Client Matrixport
Title Smart Contract Audit Report
Target ccTokens
Version 1.0
Author Xuxian Jiang
Auditors Huaguo Shi, Jeff Liu, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0.1 July 7, 2021 Xuxian Jiang Final Release Amended
1.0 November 22, 2020 Xuxian Jiang Final Release
1.0-rc November 22, 2020 Xuxian Jiang Release Candidate
0.2 November 20, 2020 Xuxian Jiang Additional Findings
0.1 November 18, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/31 PeckShield Audit Report #: 2020-104

Public

Contents

1 Introduction 5
1.1 About ccTokens . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Improved transferFrom() in ERC20Basic . 12
3.2 Removal of Unused Code . 15
3.3 Suggested Adherence of Checks-Effects-Interactions 17
3.4 Improved Validity Checks in removeOwner() . 19
3.5 Suggested transactionExists() in revokeConfirmation()/executeTransaction() 20
3.6 Trust Issue of Admin Keys Behind Custodian . 22

4 Conclusion 24

5 Appendix 25
5.1 Basic Coding Bugs . 25

5.1.1 Constructor Mismatch . 25
5.1.2 Ownership Takeover . 25
5.1.3 Redundant Fallback Function . 25
5.1.4 Overflows & Underflows . 25
5.1.5 Reentrancy . 26
5.1.6 Money-Giving Bug . 26
5.1.7 Blackhole . 26
5.1.8 Unauthorized Self-Destruct . 26

3/31 PeckShield Audit Report #: 2020-104

Public

5.1.9 Revert DoS . 26
5.1.10 Unchecked External Call . 27
5.1.11 Gasless Send . 27
5.1.12 Send Instead Of Transfer . 27
5.1.13 Costly Loop . 27
5.1.14 (Unsafe) Use Of Untrusted Libraries . 27
5.1.15 (Unsafe) Use Of Predictable Variables . 28
5.1.16 Transaction Ordering Dependence . 28
5.1.17 Deprecated Uses . 28

5.2 Semantic Consistency Checks . 28
5.3 Additional Recommendations . 28

5.3.1 Avoid Use of Variadic Byte Array . 28
5.3.2 Make Visibility Level Explicit . 29
5.3.3 Make Type Inference Explicit . 29
5.3.4 Adhere To Function Declaration Strictly . 29

References 30

4/31 PeckShield Audit Report #: 2020-104

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
ccTokens, we outline in this report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contract can be further improved due to the presence
of several issues. This document outlines our audit results.

1.1 About ccTokens

ccTokens are ERC20 tokens that project blockchain assets such as BTC in Ethereum on a 1:1 basis.
It enables seamless integration of each crypto asset into the Ethereum ecosystem. All ccTokens
reserves are safeguarded by qualified third-party custodians. Meanwhile, a multi-signature mechanism
is adopted for its crucial aspects such as mining and burning, allowing on-the-chain verification.
Therefore, it provides cross-chain asset services that are both transparent and reliable. At the same
time, its blacklist mechanism maximizes security and its applications.

The basic information of ccTokens is as follows:

Table 1.1: Basic Information of ccTokens

Item Description
Issuer Matrixport

Website https://www.crosschain.network/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 7, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

5/31 PeckShield Audit Report #: 2020-104

Public

• https://github.com/ccTokens/Smart-Contract.git (466ffc6)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/ccTokens/Smart-Contract.git (5c490c2)

1.2 About PeckShield

PeckShield Inc. [18] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [13]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/31 PeckShield Audit Report #: 2020-104

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/31 PeckShield Audit Report #: 2020-104

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [12], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/31 PeckShield Audit Report #: 2020-104

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/31 PeckShield Audit Report #: 2020-104

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the ccTokens implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 3

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/31 PeckShield Audit Report #: 2020-104

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 2 low-severity vulnerabilities, and 3 informational recommendations.

Table 2.1: Key ccTokens Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved transferFrom() in ERC20Basic Business Logic Fixed
PVE-002 Informational Removal of Unused Code Coding Practices Fixed
PVE-003 Informational Suggested Adherence of Checks-Effects-

Interactions
Time and State Fixed

PVE-004 Low Improved Validity Checks in removeOwner()
Error Conditions, Return
Values, Status Codes

Fixed

PVE-005 Informational Suggested transactionExists() in revokeCon-
firmation()/executeTransaction()

Error Conditions, Return
Values, Status Codes

Fixed

PVE-006 Medium Trust Issue of Admin Keys Behind Custodian Security Features Fixed

Please refer to Section 3 for details.

11/31 PeckShield Audit Report #: 2020-104

Public

3 | Detailed Results

3.1 Improved transferFrom() in ERC20Basic

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ERC20Basic

• Category: Business Logic [9]

• CWE subcategory: CWE-754 [6]

Description

ccTokens are ERC20-compliant tokens that project blockchain assets such as BTC in Ethereum on a
1:1 basis. Accordingly, there is a need for their contract implementation, i.e., ERC20Basic, to follow
the ERC20 specification. As the first step of our audit, we examine the list of API functions defined
by the ERC20 specification and validate whether there exist any inconsistency or incompatibility in
the implementation or the inherent business logic.

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited ccTokens. In the following two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted
ERC20 specification.

Meanwhile, we notice in the transferFrom() routine, there is a common practice that is miss-
ing but widely used in other ERC20 contracts. Specifically, when msg.sender = _from, the current
transferFrom() implementation disallows the token transfer if msg.sender has not explicitly allows
spending from herself yet. A common practice will whitelist this special case and allow transferFrom

() if msg.sender = _from even there is no allowance specified.

52 f unc t i on t r a n s f e rF r om (
53 address _from ,
54 address _to ,
55 uint256 _value
56)
57 o v e r r i d e pub l i c notPaused notB locked

12/31 PeckShield Audit Report #: 2020-104

Public

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

58 r e tu rn s (bool)
59 {
60 r equ i r e (_notBlocked (_from) , "from -address has been blocked") ;
61 r equ i r e (_notBlocked (_to) , "to -address has been blocked") ;
62 r equ i r e (_value <= ba l a n c e s [_from] , "insufficient balance") ;
63 r equ i r e (_value <= a l l owed [_from] [msg . sender] , "value > allowed") ;
64 r equ i r e (_to != address (0) , "invalid to -address") ;

66 ba l a n c e s [_from] = ba l a n c e s [_from] . sub (_value) ;
67 ba l a n c e s [_to] = ba l a n c e s [_to] . add (_value) ;
68 a l l owed [_from] [msg . sender] = a l l owed [_from] [msg . sender] . sub (_value) ;
69 emit Trans fer (_from , _to , _value) ;
70 re tu rn t rue ;
71 }

Listing 3.1: ERC20Basic.sol

In addition, we perform a further examination on certain features that are permitted by the ERC20
specification or even further extended in follow-up refinements and enhancements (e.g., ERC777),
but not required for implementation. These features are generally helpful, but may also impact or
bring certain incompatibility with current DeFi protocols. Therefore, we consider it is important to
highlight them as well. This list is shown in Table 3.3.

Recommendation Improve the transferFrom() logic by considering the special case when

13/31 PeckShield Audit Report #: 2020-104

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approve() event Is emitted on any successful call to approve() ✓

14/31 PeckShield Audit Report #: 2020-104

Public

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausible The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

✓

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

Hookable The token contract allows the sender/recipient to be notified while send-
ing/receiving tokens

—

Permittable The token contract allows for unambiguous expression of an intended
spender with the specified allowance in an off-chain manner (e.g., a per-
mit() call to properly set up the allowance with a signature).

—

msg.sender = _from. In the meantime, consider the support of permit() (in EIP-2612) for better
integration and usability.

Status This issue has been fixed in the commit: 5c490c2.

3.2 Removal of Unused Code

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: MemberMgr

• Category: Coding Practices [8]

• CWE subcategory: CWE-563 [4]

Description

ccTokens makes good use of a number of reference contracts, such as ERC20Basic, NamedERC20, Ownable
, and SafeMath to facilitate its code implementation and organization. For example, the ccToken smart
contract has so far imported at least five reference contracts. However, we observe the inclusion of
certain unused code or the presence of unnecessary redundancies that can be safely removed.

15/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

For example, if we examine closely the MemberMgr contract, there is an enumerable named
MerchantStatus with three states: STOPPED, VALID, REMOVED. The first two states are indeed necessary,
but not the third REMOVED state. This unused state is apparently left from an already deprecated
function. With that, we can simply drop the REMOVED state.

45 f unc t i on r equ i r eMe r chan t (address _who) o v e r r i d e pub l i c view {
46 MerchantStatusData memory merchantState = merchantSta tus [_who] ;
47 i f (! merchantState . _ex i s t) {
48 r equ i r e (f a l s e , "not a merchant") ;
49 a s s e r t (f a l s e) ;
50 }
51
52 i f (merchantState . s t a t u s == MerchantStatus .STOPPED) {
53 r equ i r e (f a l s e , "merchant has been stopped") ;
54 a s s e r t (f a l s e) ;
55 }
56
57 r equ i r e (merchantState . s t a t u s == MerchantStatus . VALID , "merchant not valid") ;
58 }

Listing 3.2: MemberMgr.sol

In addition, we notice the requireMerchant() routine can be revised to remove unreachable code
in its implementation. In particular, the two asset statements (lines 49 and 54) are not used and can
be safely removed. Also, the respective require(false) statements can be effectively combined with
conditional checks for better readability and improved conciseness.

Recommendation Remove unreachable code in MemberMgr and revise the requireMerchant()

routine as follows:

45 f unc t i on r equ i r eMe r chan t (address _who) o v e r r i d e pub l i c view {
46 MerchantStatusData memory merchantState = merchantSta tus [_who] ;
47 r equ i r e (merchantState . _ex i s t , "not a merchant") ;
48 r equ i r e (merchantState . s t a t u s != MerchantStatus .STOPPED, "merchant has been

stopped") ;
49 r equ i r e (merchantState . s t a t u s == MerchantStatus . VALID , "merchant not valid") ;
50 }

Listing 3.3: MemberMgr.sol (revised)

Status This issue has been fixed in the commit: 5c490c2.

16/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

3.3 Suggested Adherence of Checks-Effects-Interactions

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: MintFactory

• Category: Time and State [10]

• CWE subcategory: CWE-663 [5]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [21] exploit, and the recent Uniswap/Lendf.Me hack [19].

We notice there is an occasion where the checks-effects-interactions principle is violated. Specif-
ically, in the MintFactory contract, the confirmMintRequest() function (see the code snippet below) is
provided to externally call a controller contract to mint ccTokens. Though this controller contract is
trusted, the invocation of an external contract requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 292) starts before effecting the update
on internal states (lines 293 − 295), hence violating the principle. In this particular case, if the
external contract has some hidden logic that may be capable of launching re-entrancy via the very
same confirmMintRequest() function.

285 f unc t i on con f i rmMintReques t (bytes32 requestHash , u in t amount) ex te rna l on l yCu s t od i an
r e tu rn s (bool) {

286 u in t blockNo = block . number ;
287 Request memory r e q u e s t = getPend ingMintReques t (r eques tHash) ;
288 r equ i r e (blockNo > r e qu e s t . requestB lockNo , "confirmMintRequest failed") ;
289
290 r equ i r e (blockNo − 20 >= r equ e s t . requestB lockNo , "confirmMintRequest failed , wait

for 20 blocks") ;
291 u in t seq = r e qu e s t . seq ;
292 r equ i r e (c o n t r o l l e r . mint (r e q u e s t . r e q u e s t e r , amount) , "mint failed") ;
293 mintReques t s [seq] . s t a t u s = Reque s tS ta tu s .APPROVED;
294 mintReques t s [seq] . amount = amount ;
295 mintReques t s [seq] . conf i rmedBlockNo = blockNo ;
296
297 emit MintConf i rmed (
298 r e q u e s t . seq ,
299 r e q u e s t . r e q u e s t e r ,
300 amount ,

17/31 PeckShield Audit Report #: 2020-104

Public

301 r e q u e s t . b tcAddress ,
302 r e q u e s t . btcTxId ,
303 blockNo ,
304 ca l cReques tHash (r e q u e s t)
305) ;
306 re tu rn t rue ;
307 }

Listing 3.4: MintFactory. sol

Again, we need to emphasize that the controller contract is trusted and will not bring any
security risk in current implementation.

Recommendation Apply necessary reentrancy prevention by following the checks-effects-

interactions best practice. The above routine can be revised as follows:

285 f unc t i on con f i rmMintReques t (bytes32 requestHash , u in t amount) ex te rna l on l yCu s t od i an
r e tu rn s (bool) {

286 u in t blockNo = block . number ;
287 Request memory r e q u e s t = getPend ingMintReques t (r eques tHash) ;
288 r equ i r e (blockNo > r e qu e s t . requestB lockNo , "confirmMintRequest failed") ;
289
290 r equ i r e (blockNo − 20 >= r equ e s t . requestB lockNo , "confirmMintRequest failed , wait

for 20 blocks") ;
291 u in t seq = r e qu e s t . seq ;
292 mintReques t s [seq] . s t a t u s = Reque s tS ta tu s .APPROVED;
293 mintReques t s [seq] . amount = amount ;
294 mintReques t s [seq] . conf i rmedBlockNo = blockNo ;
295
296 r equ i r e (c o n t r o l l e r . mint (r e q u e s t . r e q u e s t e r , amount) , "mint failed") ;
297 emit MintConf i rmed (
298 r e q u e s t . seq ,
299 r e q u e s t . r e q u e s t e r ,
300 amount ,
301 r e q u e s t . b tcAddress ,
302 r e q u e s t . btcTxId ,
303 blockNo ,
304 ca l cReques tHash (r e q u e s t)
305) ;
306 re tu rn t rue ;
307 }

Listing 3.5: MintFactory. sol

Status This issue has been fixed in the commit: 5c490c2.

18/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

3.4 Improved Validity Checks in removeOwner()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: MultiSigWallet

• Category: Status Codes [11]

• CWE subcategory: CWE-391 [3]

Description

ccTokens makes use of multi-sig wallets to mitigate possible risk from single centralized party.
For example, both MemberMgr and ccTokenController have a privileged owner that is controlled by
MultiSigWallet instances.

While reviewing the MultiSigWallet implementation, we notice the presence of removeOwner(),
which is designed to remove an existing owner. In the following, we show its code snippet of current
implementation. Our analysis shows that this routine has a corner case that can be better handled.
Specifically, when the given owner for removal is the only remaining one or is the last one in the
owners array, this routine fails to properly remove it from the array, even though the state has been
properly marked as false (line 146).

139 /// @dev Allows to remove an owner. Transaction has to be sent by wallet.
140 /// @param owner Address of owner.
141 f unc t i on removeOwner (address owner)
142 pub l i c
143 on l yWa l l e t
144 owne rEx i s t s (owner)
145 {
146 i sOwner [owner] = f a l s e ;
147 f o r (u in t i = 0 ; i < owners . l ength − 1 ; i++)
148 i f (owners [i] == owner) {
149 owners [i] = owners [owners . l ength − 1] ;
150 owners . pop () ;
151 break ;
152 }
153 // owners.length -= 1;

155 i f (r e q u i r e d > owners . l ength)
156 changeRequ i rement (owners . l ength) ;
157 emit OwnerRemoval (owner) ;
158 }

Listing 3.6: MultiSigWallet . sol

Because of the above corner case, it is possible to lead to an unexpected scenario where the
to-be-removed owner still remains in the owners array without reducing the array length, hence giving

19/31 PeckShield Audit Report #: 2020-104

Public

an inaccurate safeguarding of the required threshold. In particular, we need to ensure there is always
at least an owner to fulfill the duties.

Recommendation Properly handle the corner case and guarantee the presence of at least one
owner as follows:

139 /// @dev Allows to remove an owner. Transaction has to be sent by wallet.
140 /// @param owner Address of owner.
141 f unc t i on removeOwner (address owner)
142 pub l i c
143 on l yWa l l e t
144 owne rEx i s t s (owner)
145 {
146 i sOwner [owner] = f a l s e ;
147 f o r (u in t i = 0 ; i < owners . l ength ; i++)
148 i f (owners [i] == owner) {
149 owners [i] = owners [owners . l ength − 1] ;
150 owners . pop () ;
151 break ;
152 }
153 i f (r e q u i r e d > owners . l ength)
154 changeRequ i rement (owners . l ength) ;
155 r equ i r e (r e qu i r e d >=1)
156 emit OwnerRemoval (owner) ;
157 }

Listing 3.7: MultiSigWallet . sol (revised)

Status This issue has been fixed in the commit: 5c490c2.

3.5 Suggested transactionExists() in
revokeConfirmation()/executeTransaction()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: MultiSigWallet

• Category: Status Codes [11]

• CWE subcategory: CWE-391 [3]

Description

As mentioned in Section 3.5, ccTokens makes use of multi-sig wallets to mitigate possible risk from
single centralized party. The MultiSigWallet implementation provides a solid codebase to meet the
requirement with standard APIs for submitTransaction(), addTransaction(), confirmTransaction(),
revokeConfirmation(), and executeTransaction().

20/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

In the following, we show the code snippet of two related routines, i.e., revokeConfirmation() and
executeTransaction(). As their names indicate, they are used to either revoke or execute an existing
transaction. We notice that both routines ensure ownerExists(), confirmed(), and notExecuted().
While the confirmed() state implies the presence of transaction, we feel it is still better to validate
the presence of transaction (via transactionExists(transactionId)) that is being revoked or executed.

217 /// @dev Allows an owner to revoke a confirmation for a transaction.
218 /// @param transactionId Transaction ID.
219 f unc t i on r e v ok eCon f i rma t i o n (u in t t r a n s a c t i o n I d)
220 pub l i c
221 owne rEx i s t s (msg . sender)
222 con f i rmed (t r a n s a c t i o n I d , msg . sender)
223 notExecuted (t r a n s a c t i o n I d)
224 {
225 c o n f i rma t i o n s [t r a n s a c t i o n I d] [msg . sender] = f a l s e ;
226 emit Revoca t i on (msg . sender , t r a n s a c t i o n I d) ;
227 }

229 /// @dev Allows anyone to execute a confirmed transaction.
230 /// @param transactionId Transaction ID.
231 f unc t i on e x e cu t eT r an s a c t i o n (u in t t r a n s a c t i o n I d)
232 pub l i c
233 owne rEx i s t s (msg . sender)
234 con f i rmed (t r a n s a c t i o n I d , msg . sender)
235 notExecuted (t r a n s a c t i o n I d)
236 {
237 i f (i sCon f i rmed (t r a n s a c t i o n I d)) {
238 Tran sa c t i on storage txn = t r a n s a c t i o n s [t r a n s a c t i o n I d] ;
239 txn . execu t ed = t rue ;
240 i f (e x t e r n a l_ c a l l (txn . d e s t i n a t i o n , txn . value , txn . data . length , txn . data))
241 emit Execu t i on (t r a n s a c t i o n I d) ;
242 e l s e {
243 emit Ex e c u t i o n F a i l u r e (t r a n s a c t i o n I d) ;
244 txn . execu t ed = f a l s e ;
245 }
246 }
247 }

Listing 3.8: MultiSigWallet . sol

In the meantime, since the transaction execution requires making an external call (line 240), which
requires possible ether as the payment of txn.value. Therefore, it is also suggested to mark related
functions as payable. The related functions include executeTransaction() and confirmTransaction().

Recommendation Apply the above suggestion to validate the transaction presence in revokeConfirmation

() and executeTransaction(). An example revision is shown below.

217 /// @dev Allows an owner to revoke a confirmation for a transaction.
218 /// @param transactionId Transaction ID.
219 f unc t i on r e v ok eCon f i rma t i o n (u in t t r a n s a c t i o n I d)
220 pub l i c

21/31 PeckShield Audit Report #: 2020-104

Public

221 owne rEx i s t s (msg . sender)
222 t r a n s a c t i o n E x i s t s (t r a n s a c t i o n I d)
223 con f i rmed (t r a n s a c t i o n I d , msg . sender)
224 notExecuted (t r a n s a c t i o n I d)
225 {
226 c o n f i rma t i o n s [t r a n s a c t i o n I d] [msg . sender] = f a l s e ;
227 emit Revoca t i on (msg . sender , t r a n s a c t i o n I d) ;
228 }

230 /// @dev Allows anyone to execute a confirmed transaction.
231 /// @param transactionId Transaction ID.
232 f unc t i on e x e cu t eT r an s a c t i o n (u in t t r a n s a c t i o n I d)
233 pub l i c
234 payable
235 owne rEx i s t s (msg . sender)
236 t r a n s a c t i o n E x i s t s (t r a n s a c t i o n I d)
237 con f i rmed (t r a n s a c t i o n I d , msg . sender)
238 notExecuted (t r a n s a c t i o n I d)
239 {
240 i f (i sCon f i rmed (t r a n s a c t i o n I d)) {
241 Tran sa c t i on storage txn = t r a n s a c t i o n s [t r a n s a c t i o n I d] ;
242 txn . execu t ed = t rue ;
243 i f (e x t e r n a l_ c a l l (txn . d e s t i n a t i o n , txn . value , txn . data . length , txn . data))
244 emit Execu t i on (t r a n s a c t i o n I d) ;
245 e l s e {
246 emit Ex e c u t i o n F a i l u r e (t r a n s a c t i o n I d) ;
247 txn . execu t ed = f a l s e ;
248 }
249 }
250 }

Listing 3.9: MultiSigWallet . sol (revised)

Status This issue has been fixed in the commit: 5c490c2.

3.6 Trust Issue of Admin Keys Behind Custodian

• ID: PVE-006

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: ccTokenController

• Category: Security Features [7]

• CWE subcategory: CWE-287 [2]

Description

In ccTokens, there is a protocol-wide custodian in MemberMgr. This custodian plays a critical role in
confirming/rejecting the minting requests from a registered merchant and actually minting ccTokens

in Ethereum.

22/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

If we take a close look at confirmMintRequest(), this specific routine takes two arguments:
requestHash and amount. The first argument is the requestHash unambiguously generated from an
earlier merchant’s mint request. However, the second argument is given by the custodian. If there is
a possible collusion between a merchant and the custodian, the (subverted) minted operations could
be detrimental to the entire ccTokens ecosystem.

285 f unc t i on con f i rmMintReques t (bytes32 requestHash , u in t amount) ex te rna l on l yCu s t od i an
r e tu rn s (bool) {

286 u in t blockNo = block . number ;
287 Request memory r e q u e s t = getPend ingMintReques t (r eques tHash) ;
288 r equ i r e (blockNo > r e qu e s t . requestB lockNo , "confirmMintRequest failed") ;
289
290 r equ i r e (blockNo − 20 >= r equ e s t . requestB lockNo , "confirmMintRequest failed , wait

for 20 blocks") ;
291 u in t seq = r e qu e s t . seq ;
292 r equ i r e (c o n t r o l l e r . mint (r e q u e s t . r e q u e s t e r , amount) , "mint failed") ;
293 mintReques t s [seq] . s t a t u s = Reque s tS ta tu s .APPROVED;
294 mintReques t s [seq] . amount = amount ;
295 mintReques t s [seq] . conf i rmedBlockNo = blockNo ;
296
297 emit MintConf i rmed (
298 r e q u e s t . seq ,
299 r e q u e s t . r e q u e s t e r ,
300 amount ,
301 r e q u e s t . b tcAddress ,
302 r e q u e s t . btcTxId ,
303 blockNo ,
304 ca l cReques tHash (r e q u e s t)
305) ;
306 re tu rn t rue ;
307 }

Listing 3.10: ccTokenController . sol

Instead of having a single EOA account as the custodian, an alternative is to make use of multi-
sig wallets. To further eliminate the administration key concern, it may be required to transfer the
role to a community-governed DAO. In the meantime, a timelock-based mechanism might also be
applicable for mitigation.

Recommendation Promptly transfer the custodian privilege to an appropriate governance
contract.

Status This issue has been fixed in the commit: 5c490c2. This commit ensures that the
custodian role can only confirm/reject, not specify, the amount.

23/31 PeckShield Audit Report #: 2020-104

https://github.com/ccTokens/Smart-Contract/commit/5c490c25df41e72901944225acb2bd6731b71bdb

Public

4 | Conclusion

In this audit, we have analyzed the ccTokens design and implementation. The system presents a
unique offering in enabling seamless integration of each crypto asset (in other blockchains) into the
Ethereum ecosystem. The current code base is well organized and those identified issues are promptly
confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

24/31 PeckShield Audit Report #: 2020-104

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [14, 15,
16, 17, 20].

• Result: Not found

• Severity: Critical

25/31 PeckShield Audit Report #: 2020-104

Public

5.1.5 Reentrancy

• Description: Reentrancy [22] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

26/31 PeckShield Audit Report #: 2020-104

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

27/31 PeckShield Audit Report #: 2020-104

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

28/31 PeckShield Audit Report #: 2020-104

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

29/31 PeckShield Audit Report #: 2020-104

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-391: Unchecked Error Condition. https://cwe.mitre.org/data/definitions/391.

html.

[4] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[5] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[6] MITRE. CWE-754: Improper Check for Unusual or Exceptional Conditions. https://cwe.mitre.

org/data/definitions/754.html.

[7] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

30/31 PeckShield Audit Report #: 2020-104

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[11] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[12] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[13] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[14] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[15] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[16] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[17] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[18] PeckShield. PeckShield Inc. https://www.peckshield.com.

[19] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[20] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[21] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

[22] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

31/31 PeckShield Audit Report #: 2020-104

https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About ccTokens
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved transferFrom() in ERC20Basic
	Removal of Unused Code
	Suggested Adherence of Checks-Effects-Interactions
	Improved Validity Checks in removeOwner()
	Suggested transactionExists() in revokeConfirmation()/executeTransaction()
	Trust Issue of Admin Keys Behind Custodian

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

